American Journal of Medical and Biological Research. 2015, 3(5), 128-132
DOI: 10.12691/AJMBR-3-5-2
Original Research

Monitoring of Thoracic Aortic Aneurysm in Blood by Fluorescence Spectroscopy

Zuzana Guľašová1, , Vladimíra Tomečková1, Miroslava Bilecová-Rabajdová1, Beáta Veliká1, Panayotis Artemiou2, Vladimír Komanický3 and Mária Mareková1

1Department of Medical and Clinical Biochemistry, Pavol Jozef Šafárik University, Faculty of Medicine, Košice, Slovakia

2Department of Cardiovascular Surgery, Pavol Jozef Šafárik University, Faculty of Medicine and VUSCH, Košice, Slovakia

3Institute of Physics, Pavol Jozef Šafárik University, Faculty of Science, Košice, Slovakia

Pub. Date: August 05, 2015

Cite this paper

Zuzana Guľašová, Vladimíra Tomečková, Miroslava Bilecová-Rabajdová, Beáta Veliká, Panayotis Artemiou, Vladimír Komanický and Mária Mareková. Monitoring of Thoracic Aortic Aneurysm in Blood by Fluorescence Spectroscopy. American Journal of Medical and Biological Research. 2015; 3(5):128-132. doi: 10.12691/AJMBR-3-5-2

Abstract

Components of the blood plasma and serum represent a mixture of various endogenous substances with fluorescence properties. The aim of this work was a detection of pathological changes in blood of patients with thoracic aortic aneurysm by fluorescence spectroscopy and atomic force microscopy. The resulting autofluorescence of fluorophores in blood of patients with thoracic aortic aneurysm decreased in comparison with healthy subjects. The structure of the thoracic aorta was changed during the thoracic aortic aneurysm, what was manifested as the structural modifications in blood of patients observed by using atomic force microscopy. The fluorescence analysis and atomic force microscopy present new experimental ways in the study of the thoracic aortic aneurysm.

Keywords

thoracic aortic aneurysm, fluorescence spectroscopy, blood plasma and serum

Copyright

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References

[1]  Artemiou, P., Charokopos, N., Rouska, E., Sabol, F., Chrysogonidis, I., Tsavdaridou, V., Paschalidis, G, “C-Reactive protein/interleukin-6 ratio as marker of the size of the uncomplicated thoracic aortic aneurysms”, Interact Cardiovasc Thorac Surg. 15, 871-877, 2012.
 
[2]  Barbour, J.R.., Spinale, F.G., Ikonomidis, J.S, “Proteinase systems and thoracic aortic aneurysm progression”, J Surg Res, 139 (2), 292-307, 2006.
 
[3]  Berillis, P, “The role of Collagen in the Aortaʹs Structure”, The Open Circulation & and Vascular Journal, 6, 1-8, 2013.
 
[4]  Coady, M.A., Rizzo, J.A., Elefteriades, J.A, “Natural history, pathogenesis, and etiology of thoracic aortic aneurysms and dissections”, Cardiol Clin, 17, 615-633, 1999.
 
[5]  El-Hamamsy, I., Yacoub, M.H, “Cellular and molecular mechanisms of thoracic aortic mechanisms”, Nat Rev Cardiol, 6 (12), 771-786, 2012.
 
[6]  Galis, Z.S., Khatri, J.J, “Matrix metalloproteinases in vascular remodelling and atherogenesis: The good, the bad, and the ugly”, Circ Res, 90, 251-262, 2002.
 
[7]  Goncalves, S., Santos, N.C., Martins-Silva, J., Saldanha, C, “Fibrinogen-beta-estradiol binding studied by fluorescence spectroscopy: denaturation and pH effects”, J Fluoresc, 16, 207-213, 2006.
 
[8]  Goumans, M.J., Liu, Z., Ten Dijke, P, “TGF-β signaling in vascular biology and dysfunction”, Cell Res, 19, 116-127, 2009.
 
[9]  He, R., Guo, D-Ch., Sun, W., Papke, Ch.L., Duraisamy, S., Estrera, A. L.; Safi, H.J.; Ahn, Ch.; Buja, L.M.; Arnett, F.C.; Zhang, J., Geng, Y.J.; Milewicz, D.M, “Characterization of the inflammatory cells in ascending thoracic aortic aneurysms in patients with Marfan syndrome, familial thoracic aortic aneurysms, and sporadic aneurysms”, J Thorac Cardiovasc Surg, 136, 922-929, 2008.
 
[10]  Kalaivani, R., Masilami, V., Sivaji, K., Elangovan, M., Selvaraj, V., Balamurugan, S.G., Al-Salhi, M.S, “Fluorescence Spectra of Blood Components for Breast Cancer Diagnosis”, Photomed Laser Surg, 26, 251-256, 2008.
 
[11]  Kim, E.S., Kim, M., Moon, A, “TGF-β-induced upregulation of MMP-2 and MMP-9 depends on p38 MAPK, but not ERK signaling in MCF-1OA human breast epithelial cells”, Int J Oncol, 25, 1375-1382, 2004.
 
[12]  Kollman, J.M., Pandi, L., Sawaya, M.R., Riley, M., Doolittle, R.F, “Crystal structure of human fibrinogen”, Biochemistry, 48, 3877-3886, 2009.
 
[13]  Koullias, G.J., Ravichandran, P., Korkolis, D.P., Rimm, D.L., Elefteriades, J.A, “Increased tissue microarray matrix metalloproteinase expression favors proteolysis in thoracic aortic aneurysms and dissections”, Ann Thorac Surg, 78, 2106-2110, 2004.
 
[14]  Lackowicz, J.R.: Principles of Fluorescence Spectroscopy. Third edition, Springer Science + Business Media, LLC, New York, USA, 2006, 63-66.
 
[15]  Lacolley, P., Regnault, V., Nicoletti, A., Li, Z., Michel, J.-B, “The Vascular Smooth Muscle Cell in arterial pathology: a cell that can take on multiple roles”, Cardiovasc Res, 95, 194-204, 2012.
 
[16]  Lee, CH.K., Wang, Y.S., Huang, L.S., Lin, S, “Atomic force microscopy: Determination of unbiding force, off rate and energy barrier for protein-ligand interaction”, Micron, 38, 446-461, 2007.
 
[17]  Longo, G.M., Xiong, W., Greiner, T.C., Zhao, Y., Fiotti, N., Baxter, B.T, “Matrix metalloproteinases 2 and 9 work in concert to produce aortic aneurysms”, J Clin Invest, 110, 625-632, 2002.
 
[18]  Masilamani, V., Alsalhi, M.S., Vijmasi, T., Govindarajan, K., RathanRai, R., Atif, M., Prasad, S., Aldwayyan, A.S, “Fluorescence spectra of blood and urine for cervical cancer detection”, J Biomed Opt, 17, 098001.
 
[19]  Nagasawa, A., Yoshimura, K., Suzuki, R., Mikamo, A., Yamashita, O., Ikeda, Y., Tsuchida, M., Hamano, K, “Important role of the angiotensin II in producing matrix metalloproteinase-9 in human thoracic aortic aneurysms”, J Surg Res, 183, 472-477, 2013.
 
[20]  Račay, P., Chomová, M., Tatarková, Z., Kaplán, P., Hatok, J., Dobrota D, “Ischemia-induced mitochondrial apoptosis is significantly attenuated by ischemic preconditionic”, Cell Mol Neurobiology, 29. 6-7, 901-908, 2009.
 
[21]  Raffetto, J.D., Khalil, R.A, “Matrix metalloproteinases and their inhibitors in vascular remodeling and vascular disease”, Biochem Pharmacol, 75, 346-359, 2008.
 
[22]  Tan, M., Liang, W., Luo, X., Gu, Y, “Fluorescence Spectroscopy Study on the Interaction between Evodiamine and Bovine Serum Albumin”, J Chem, 2013, 1-6, 2013.
 
[23]  Tomečko, M., Sabol, F., Frankovičová, M., Petrášová, D, “Monitorovanie ischemickej choroby končatiny pomocou merania autofluorescencie krvi”, Ateroskleróza, 3-4, 477-482, 2013.
 
[24]  Visse, R., Nagase, H, “Matrix metalloproteinases and tissue inhibitors of metalloproteinases: Structure, function, and biochemistry”, Circ Res, 92, 827-839, 2003.
 
[25]  Zervoudaki, A., Economou, E., Stefanadis, C., Pitsavos, C., Tsioufis, K., Aggeli, C., Vasiliadou, K., Toutouza, M., Toutouzas, P, “Plasma levels of active extracellular matrix metalloproteinases 2 and 9 in patients with essential hypertension before and after antihypertensive treatment”, J Hum Hypertens, 17, 119-124, 2003.
 
[26]  Zhang, G., Que, Q., Pan, J., Guo, J, “Study of the interaction between icariin and human serum albumin by fluorescence spectroscopy”, J Mol Struct, 881, 132-138, 2008.
 
[27]  Zheng, W., Dong, L., Zeng, Y., Luo, Y., Qu, J.Y, “Two-photon excited hemoglobin fluorescence”, Biomed Opt Express, 2, 71-79, 2011.