American Journal of Medical and Biological Research. 2015, 3(4), 107-112
DOI: 10.12691/AJMBR-3-4-5
Original Research

Integrated Planetary Outpost Simulation to Assess Crew Psychophysiological Response as a First Approach to a Lunar/Mars Manned Base Settlement

Lynn Van Broock1, Pablo de León2 and Daniel E. Vigo3,

1Space and Applied Neuroscience Laboratory, Institute for Biomedical Research (BIOMED), School of Medical Sciences, Pontifical Catholic University of Argentina (UCA), and the National Scientific and Technical Research Council (CONICET), Buenos Aires, C1107AAZ, Argentina

2Human Spaceflight Laboratory, Department of Space Studies, University North Dakota, Grand Forks, ND 58202, USA

3Laboratorio de Neurociencia Aplicada y Espacial – Instituto de Investigaciones Biomédicas Facultad de Ciencias Médicas Universidad Católica Argentina / CONICET. Alicia Moreau de Justo 1500. C1107AAZ – Ciudad Autónoma de Buenos Aires, Argentina

Pub. Date: June 03, 2015

Cite this paper

Lynn Van Broock, Pablo de León and Daniel E. Vigo. Integrated Planetary Outpost Simulation to Assess Crew Psychophysiological Response as a First Approach to a Lunar/Mars Manned Base Settlement. American Journal of Medical and Biological Research. 2015; 3(4):107-112. doi: 10.12691/AJMBR-3-4-5

Abstract

One of the most effective and complex concepts in planetary settlement is the integration of interfaces such as habitat modules, rover vehicles and space suits that can connect via airlocks, suitports and tunnels, and can disconnect to operate independently. This scenario is ideal to assess common symptoms during spaceflight missions such as fatigue, sleep loss, circadian desynchronization and work overload, This paper describes the main features of an integrated system built at the Human Spaceflight Laboratory from the Department of Space Studies at the University of North Dakota and a series of feasible measurements that can be conducted there to assess psychophysiological responses of a crew during confinement. This approach may contribute in the analysis of environmental mission conditions that interfere with sleep quality and individual vulnerabilities associated to sleep loss and circadian desynchronization.

Keywords

space medicine, planetary outpost, circadian rhythm, sleep, confinement

Copyright

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References

[1]  Binsted K, Kobrick R, Griofa M, Bishop S, Lapierre J. Human factors research as part of a Mars exploration analogue mission on Devon Island. Planetary and Space Science 2013; 2010: 994-1006.
 
[2]  Vigo DE, Tuerlinckx F, Ogrinz B, Wan L, Simonelli G, Bersenev E, et al. Circadian rhythm of autonomic cardiovascular control during Mars500 simulated mission to mars. Aviat Space Environ Med 2013 Oct; 84 (10): 1023-8.
 
[3]  Arendt J. Biological rhythms during residence in polar regions. Chronobiol Int 2012 May; 29 (4): 379-94.
 
[4]  Mallis MM, DeRoshia CW. Circadian rhythms, sleep, and performance in space. Aviat Space Environ Med 2005 Jun; 76 (6 Suppl): B94-107.
 
[5]  National Aeronautics and Space Administration. Technical Report. Man-system Integration Standards. NASA-STD-3000, 1995.
 
[6]  van Broock L, De Leon P. Proyecto NASA EPSCoR 2009: Estrategias Integradas para la exploración tripulada de la Luna y Marte. Proceedings of the VI Congreso Nacional de Tecnología Espacial (Argentina), 2013.
 
[7]  De Leon P, Harris G. DX-2: Development of an Advanced Planetary Space Suit Demonstrator System for the Lunar Environment. Proceedings of the 41st International Conference on Environmental Systems, 2011.
 
[8]  De Leon P, Daga A, Schneider I, van Broock L. Design and Construction of an Inflatable Lunar Base with Pressurized Rovers and Suitports. Proceedings of the 61st International Astronautical Congress, 2010.
 
[9]  Hills T. Lunar Habitat Airlock. Technical Report. Department of Space Studies, University of North Dakota, 2012.
 
[10]  Johns MW. A new method for measuring daytime sleepiness: the Epworth sleepiness scale. Sleep 1991 Dec; 14 (6): 540-5.
 
[11]  Buysse DJ, Reynolds CF, III, Monk TH, Berman SR, Kupfer DJ. The Pittsburgh Sleep Quality Index: a new instrument for psychiatric practice and research. Psychiatry Res 1989 May; 28 (2): 193-213.
 
[12]  Morgenthaler T, Alessi C, Friedman L, Owens J, Kapur V, Boehlecke B, et al. Practice parameters for the use of actigraphy in the assessment of sleep and sleep disorders: an update for 2007. Sleep 2007 Apr 1; 30 (4): 519-29.
 
[13]  Moser M, Fruhwirth M, Penter R, Winker R. Why life oscillates--from a topographical towards a functional chronobiology. Cancer Causes Control 2006 May; 17 (4): 591-9.
 
[14]  Van Dongen HP, Dinges DF. Sleep, circadian rhythms, and psychomotor vigilance. Clin Sports Med 2005 Apr; 24 (2): 237-viii.
 
[15]  Loh S, Lamond N, Dorrian J, Roach G, Dawson D. The validity of psychomotor vigilance tasks of less than 10-minute duration. Behav Res Methods Instrum Comput 2004 May; 36 (2): 339-46.
 
[16]  Diez JJ, Vigo DE, Lloret SP, Rigters S, Role N, Cardinali DP, et al. Sleep habits, alertness, cortisol levels, and cardiac autonomic activity in short-distance bus drivers: differences between morning and afternoon shifts. J Occup Environ Med 2011 Jul; 53 (7): 806-11.
 
[17]  Vigo DE, Dominguez J, Guinjoan SM, Scaramal M, Ruffa E, Solerno J, et al. Nonlinear analysis of heart rate variability within independent frequency components during the sleep-wake cycle. Auton Neurosci 2010 Apr 19; 154 (1-2): 84-8.
 
[18]  Gabel V, Maire M, Reichert CF, Chellappa SL, Schmidt C, Hommes V, et al. Effects of artificial dawn and morning blue light on daytime cognitive performance, well-being, cortisol and melatonin levels. Chronobiol Int 2013 Oct; 30 (8):988-97.
 
[19]  Mirick DK, Bhatti P, Chen C, Nordt F, Stanczyk FZ, Davis S. Night shift work and levels of 6-sulfatoxymelatonin and cortisol in men. Cancer Epidemiol Biomarkers Prev 2013 Jun; 22 (6):1079-87.
 
[20]  Dijk DJ, Neri DF, Wyatt JK, Ronda JM, Riel E, Ritz-De CA, et al. Sleep, performance, circadian rhythms, and light-dark cycles during two space shuttle flights. Am J Physiol Regul Integr Comp Physiol 2001 Nov; 281 (5): R1647-R1664.
 
[21]  Bock O, Weigelt C, Bloomberg JJ. Cognitive demand of human sensorimotor performance during an extended space mission: a dual-task study. Aviat Space Environ Med 2010 Sep; 81 (9): 819-24.
 
[22]  Baevsky RM, Baranov VM, Funtova II, Diedrich A, Pashenko AV, Chernikova AG, et al. Autonomic cardiovascular and respiratory control during prolonged spaceflights aboard the International Space Station. J Appl Physiol 2007 Jul; 103 (1):156-61.
 
[23]  Verheyden B, Liu J, Beckers F, Aubert AE. Adaptation of heart rate and blood pressure to short and long duration space missions. Respir Physiol Neurobiol 2009 Oct; 169 Suppl 1: S13-S16.
 
[24]  Verheyden B, Liu J, Beckers F, Aubert AE. Operational point of neural cardiovascular regulation in humans up to 6 months in space. J Appl Physiol 2010 Mar;108 (3): 646-54.
 
[25]  Farrace S, Ferrara M, De AC, Trezza R, Cenni P, Peri A, et al. Reduced sympathetic outflow and adrenal secretory activity during a 40-day stay in the Antarctic. Int J Psychophysiol 2003 Jul; 49 (1): 17-27.
 
[26]  Yoneyama S, Hashimoto S, Honma K. Seasonal changes of human circadian rhythms in Antarctica. Am J Physiol 1999 Oct; 277 (4 Pt 2): R1091-R1097.
 
[27]  Griffiths PA, Folkard S, Bojkowski C, English J, Arendt J. Persistent 24-h variations of urinary 6-hydroxy melatonin sulphate and cortisol in Antarctica. Experientia 1986 Apr 15; 42 (4): 430-2.
 
[28]  Premkumar M, Sable T, Dhanwal D, Dewan R. Circadian Levels of Serum Melatonin and Cortisol in relation to Changes in Mood, Sleep, and Neurocognitive Performance, Spanning a Year of Residence in Antarctica. Neuroscience Journal 2013; 2013: 1-10.
 
[29]  Basner M, Dinges DF, Mollicone D, Ecker A, Jones CW, Hyder EC, et al. Mars 520-d mission simulation reveals protracted crew hypokinesis and alterations of sleep duration and timing. Proc Natl Acad Sci U S A 2013 Feb 12; 110 (7): 2635-40.
 
[30]  Vigo DE, Ogrinz B, Wan L, Bersenev E, Tuerlinckx F, Van den Bergh O, et al. Sleep-wake differences in heart rate variability during a 105-day simulated mission to Mars. Aviat Space Environ Med 2012 Feb; 83 (2): 125-30.