American Journal of Medical and Biological Research. 2015, 3(2), 62-67
DOI: 10.12691/AJMBR-3-2-3
Original Research

Effects of Tenascin-C (TNC) Knockdown on Global Genes Expression

Ali S. Alharth1, and Sherien M. El-Daly2

1Department of Public Health, Ministry of Health, Riyadh, Saudi Arabia

2Department of Medical Biochemistry, National Research Center, Cairo, Egypt

Pub. Date: April 22, 2015

Cite this paper

Ali S. Alharth and Sherien M. El-Daly. Effects of Tenascin-C (TNC) Knockdown on Global Genes Expression. American Journal of Medical and Biological Research. 2015; 3(2):62-67. doi: 10.12691/AJMBR-3-2-3

Abstract

The extracellular matrix protein tenascin-C (TNC) is up-regulated in many cancers including breast cancer. TNC is associated with tumour progression and poor prognosis. The aim of this study was to investigate the effects of TNC knockdown on global gene expression in TNC expressing invasive breast cancer cell lines. Breast cancer cell lines (MDA-MB-231 and MDA-MB-436) were transfected with small interfering RNA (siRNAs) targeting total TNC. cDNA microarray was used to analyse the effects of TNC knockdown on global gene expression at the mRNA level. Microarray analysis following total TNC knockdown revealed significant changes in gene expression: CREBL2, YWHAE and RRAS2 showed down regulation and QKI was specifically up-regulated. In conclusion, the silencing of TNC expression caused significant alteration on global genes expression associated with tumour progression.

Keywords

Microarray, TNC Knockdown, siRNA

Copyright

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References

[1]  Daley, W.P., Peters, S.B. & Larsen, M. 2008, “Extracellular Matrix Dynamics In Development And Regenerative Medicine”, Journal Of Cell Science, Vol. 121, No. 3, Pp. 255-264.
 
[2]  Ishihara, A., Yoshida, T., Tamaki, H. & Sakakura, T. 1995, “Tenascin Expression In Cancer Cells And Stroma Of Human Breast Cancer And Its Prognostic Significance”, Clinical Cancer Research, Vol. 1, No. 9, Pp. 1035-1041.
 
[3]  Orend, G., Huang, W.T., Olayioye, M.A., Hynes, N.E. & Chiquet-Ehrismann, R. 2003, “Tenascin-C Blocks Cell-Cycle Progression Of Anchorage-Dependent Fibroblasts On Fibronectin Through Inhibition Of Syndecan-4”, Oncogene, Vol. 22, No. 25, Pp. 3917-3926.
 
[4]  Ruiz, C., Huang, W.T., Hegi, M.E., Lange, K., Hamou, M.F., Fluri, E., Oakeley, E.J., Chiquet-Ehrismann, R. & Orend, G. 2004, “Dilfferential Gene Expression Analysis Reveals Activation Of Growth Promoting Signaling Pathways By Tenascin-C”, Cancer Research, Vol. 64, No. 20, Pp. 7377-7385.
 
[5]  Orend, G. 2005a, “Potential Oncogenic Action Of Tenascin-C In Tumorigenesis”, International Journal Of Biochemistry & Cell Biology, Vol. 37, No. 5, Pp. 1066-1083.
 
[6]  Adams, M., Jones, J.L., Walker, R.A., Pringle, J.H. & Bell, S.C. 2002, “Changes In Tenascin-C Isoform Expression In Invasive And Preinvasive Breast Disease”, Cancer Research, Vol. 62, No. 11, Pp. 3289.
 
[7]  Guttery, D.S., Hancox, R.A., Mulligan, K.T., Hughes, S., Lambe, S.M., Pringle, J.H., Walker, R.A., Jones, J.L. & Shaw, J.A. 2010a, “Association Of Invasion-Promoting Tenascin-C Additional Domains With Breast Cancers In Young Women”, Breast Cancer Research, Vol. 12, No. 4, Pp. R57.
 
[8]  Bolstad, B.M., Irizarry, R.A., Astrand, M. & Speed, T.P. 2003, “A Comparison Of Normalization Methods For High Density Oligonucleotide Array Data Based On Variance And Bias”, Bioinformatics, Vol. 19, No. 2, Pp. 185-193.
 
[9]  J. Jackson And Nancy Standart (2 January 2007) “How Do Micrornas Regulate Gene Expression?” Sci. STKE 2007 (367), Re1.
 
[10]  Petit, V. & Thiery, J.P. 2000, “Focal Adhesions: Structure and Dynamics”, Biology Of The Cell, Vol. 92, No. 7, Pp. 477-494.
 
[11]  Mostovich, L.A., Prudnikova, T.Y., Kondratov, A.G., Loginova, D., Vavilov, P.V., Rykova, V.I., Sidorov, S.V., Pavlova, T.V., Kashuba, V.I., Zabarovsky, E.R. & Grigorieva, E.V. 2011, “Integrin Alpha9 (ITGA9) Expression And Epigenetic Silencing In Human Breast Tumors”, Cell Adhesion & Migration, Vol. 5, No. 5, Pp. 395-401.
 
[12]  Cai, L., Abe, M., Izumi, S., Imura, M., Yasugi, T. & Ushijima, T. 2007, “Identification Of PRTFDC1 Silencing And Aberrant Promoter Methylation Of GPR150, ITGA8 And HOXD11 In Ovarian Cancers”, Life Sciences, Vol. 80, No. 16, Pp. 1458-1465.
 
[13]  Son, J., Lee, J., Kim, H., Ha, H. & Lee, Z.H. 2010, “Camp-Response-Element-Binding Protein Positively Regulates Breast Cancer Metastasis And Subsequent Bone Destruction”, Biochemical And Biophysical Research Communications, Vol. 398, No. 2, Pp. 309-314.
 
[14]  Ma, X., Zhang, H., Yuan, L., Jing, H., Thacker, P. & Li, D. 2011, “CREBL2, Interacting With CREB, Induces Adipogenesis In 3T3-L1 Adipocytes”, Biochemical Journal, Vol. 439, Pp. 27-38.
 
[15]  Tak, H., Jang, E., Kim, S.B., Park, J., Suk, J., Yoon, Y.S., Ahn, J.K., Lee, J. & Joe, C.O. 2007, “14-3-3epsilon Inhibits MK5-Mediated Cell Migration By Disrupting F-Actin Polymerization”, Cellular Signalling, Vol. 19, No. 11, Pp. 2379-2387.
 
[16]  De, S., Marcinkiewicz, J.L., Vijayaraghavan, S. & Kline, D. 2012, “Expression Of 14-3-3 Protein Isoforms In Mouse Oocytes, Eggs And Ovarian Follicular Development.”, BMC Research Notes, Vol. 5, Pp. 57-57.
 
[17]  Cimino, D., Fuso, L., Sfiligoi, C., Biglia, N., Ponzone, R., Maggiorotto, F., Russo, G., Cicatiello, L., Weisz, A., Taverna, D., Sismondi, P. & De Bortoli, M. 2008, “Identification Of New Genes Associated With Breast Cancer Progression By Gene Expression Analysis Of Predefined Sets Of Neoplastic Tissues”, International Journal Of Cancer, Vol. 123, No. 6, Pp. 1327-1338.
 
[18]  Alarcon, B. & Martinez-Martin, N. 2012, “Rras2, Rhog And T-Cell Phagocytosis.”, Small Gtpases, Vol. 3, No. 2, Pp. 97-101.
 
[19]  Larive, R.M., Abad, A., Cardaba, C.M., Hernandez, T., Canamero, M., De Alava, E., Santos, E., Alarcon, B. & Bustelo, X.R. 2012, “The Ras-Like Protein R-Ras2/TC21 Is Important For Proper Mammary Gland Development”, Molecular Biology Of The Cell, Vol. 23, No. 12, Pp. 2373-2387.
 
[20]  Rokavec, M., Schroth, W., Amaral, S.M.C., Fritz, P., Antoniadou, L., Glavac, D., Simon, W., Schwab, M., Eichelbaum, M. & Branch, H. 2008, “A Polymorphism In The TC21 Promoter Associates With An Unfavorable Tamoxifen Treatment Outcome In Breast Cancer”, Cancer Research, Vol. 68, No. 23, Pp. 9799-9808.
 
[21]  Clark, G., Kinch, M., Gilmer, T., Burridge, K. & Der, C. 1996, “Overexpression Of The Ras-Related TC21/R-Ras2 Protein May Contribute To The Development Of Human Breast Cancers”, Oncogene, Vol. 12, No. 1, Pp. 169-176.
 
[22]  Novikov, L., Park, J.W., Chen, H., Klerman, H., Jalloh, A.S. & Gamble, M.J. 2011, “QKI-Mediated Alternative Splicing Of The Histone Variant Macroh2a1 Regulates Cancer Cell Proliferation”, Molecular And Cellular Biology, Vol. 31, No. 20, Pp. 4244-4255.
 
[23]  Bian, Y., Wang, L., Lu, H., Yang, G., Zhang, Z., Fu, H., Lu, X., Wei, M., Sun, J., Zhao, Q., Dong, G. & Lu, Z. 2012, “Downregulation Of Tumor Suppressor QKI In Gastric Cancer And Its Implication In Cancer Prognosis”, Biochemical And Biophysical Research Communications, Vol. 422, No. 1, Pp. 187-193.