American Journal of Medical and Biological Research. 2013, 1(1), 23-27
DOI: 10.12691/AJMBR-1-1-4
Review Article

Functional and Anatomical Features of the Dorsal Column Nuclei in Mammals and Lower Animals

Sami I. Zaqout1, and Saleh M. Al-Hussain2

1Anatomy Department, Faculty of Medicine, Islamic University of Gaza, Gaza, Palestine

2Anatomy Department, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan

Pub. Date: February 15, 2013

Cite this paper

Sami I. Zaqout and Saleh M. Al-Hussain. Functional and Anatomical Features of the Dorsal Column Nuclei in Mammals and Lower Animals. American Journal of Medical and Biological Research. 2013; 1(1):23-27. doi: 10.12691/AJMBR-1-1-4

Abstract

The dorsal fasciculi of the spinal cord are known as the chief pathways for the conduction of impulses underlying deep sensibility and tactile discrimination from limbs which reach the thalamus and ultimately the cerebral cortex after a relay at a bulbar level, the dorsal column nuclei. It is believed that the development of the dorsal fasciculi and their nuclei in the mammalian and primate series is correlated with increasing sensory discrimination in the skin and the increased development of proprioceptive sense in the limb musculature. In this review we will discuss the reflection of the development of limbs and sensory discrimination in lower animals and mammals on the organization and some functional aspects of these nuclei.

Keywords

Gracile, Cuneate, Neurons, Development

Copyright

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References

[1]  Bermejo, P.E., Jimenez, C.E., Torres, C.V. and Avendano, C., “Quantitative Stereological Evaluation of the Gracile and Cuneate Nuclei and Their Projection Neurons in the Rat,” J. Comp. Neurol., 463. 419-433. 2003.
 
[2]  Bischoff, E., “Zur Anatomie der Hinterstrangkerne bei Saugethieren,” Jb. Psychiat. Neurol., 18. 371-384. 1899.
 
[3]  FCAT—Federative Committee on Anatomical Terminology 1998.
 
[4]  Brodal, A. and Pompeiano, “The vestibular nuclei in the cat,” J. Anat., 91. 438-454. 1975.
 
[5]  Tracey, DJ. and Waite, P.M.E., Somatosensory system: The rat nervous system, Academic Press, In: Paxinos G. (ed.) San Diego, 1995, 689-704.
 
[6]  Ariens-Kappers, C.U., Huber, G.C. and Crosby, E.C., The Comparative Anatomy of the Nervous System of Vertebrates, Including Man, New York Macmillan. 1936.
 
[7]  Hayle, T.H., “A comparative study of spinal projections to the brain (except cerebellum) in three classes of poikilothermic vertebrates,” J. Comp. Neurol., 149. 463-467. 1973.
 
[8]  Crockett, D.R., Foschini, D.R., Girgis, W.S. and Egger, M.D., “Immunocytochemical localization of the low-affinity nerve growth factor receptor (p75NGFR) in the cuneate nucleus of the rat and its relationship to cytochrome-oxidase activity,” Brain Res., 603. 324-327. 1993.
 
[9]  Corvaja, N., Pellegrini, M. and Buisseret-Delmas, C., “Ultrastructure of supraspinal dorsal root projections in the toads. I. The obex region,” Brain Res., 142. 413-424. 1978.
 
[10]  Silvey, G.E., Gulley, R.L. and Danvidoff, R.A., “The frog dorsal column nucleus,” Brain Res., 73. 421-437. 1974.
 
[11]  Ebbesson, S.O.E., “Brain stem afferents from the spinal cord in a sample of reptilian and amphibian species,” Ann. N.Y. Acad. Sci., 167. 80-102. 1969.
 
[12]  Hursh, J.B., “Relayed impulses in ascending branches of dorsal root fibers,” J. Neurophysiol., 3. 166-174. 1940.
 
[13]  Szabo, T., “Existence de fibres longues d'origine ganglionnaire dans les colonnes posterieures dela moelle de Grenouille,” Arch. Sci. physiol., 9. 27-33. 1955.
 
[14]  Ebbesson, S.O.E., “Ascending fibre projections from the spinal cord in the tegu lizard (Tupinambis nigre punctatus),” Anat. Rec., 154. 341-342. 1966.
 
[15]  Ebbesson, S.O.E., “Ascending axon degeneration following hemisection of the spinal cord in the tegu lizard (Tupinambis nigropunctatus),” Brain Res., 5. 178-206. 1967.
 
[16]  Goldby, F. and Robinson, L.R., “The central connections of the dorsal spinal nerve roots and the ascending tracts in the spinal cord of Lacerta uiridis,” J. Anat. (Lond.), 96. 153-170. 1962.
 
[17]  Jacobs, V.L., “A spinovestibular component of the dorsal funiculus in a lizard (Lacerta virids),” Anat. Rec., 157. 264-265. 1967.
 
[18]  Joseph, B.S. and Whitlock, D.C., “Central projections of brachial to lumbar dorsal roots in reptiles,” J. Comp. Neurol., 132. 469-484. 1968.
 
[19]  Kusuma, A. and ten Donkelaar, H.J., “Dorsal root projections in various types of reptilian,” Brain Behav. Evol., 17. 291-309. 1980.
 
[20]  Huber, G.C. and Crosby, E.C., “On thalamic and tectal nuclei and fibre paths in the brain of the American alligator,” J. Comp. Neurol., 40. 97-227. 1926.
 
[21]  Kruger, L., Siminoff, R. and Witkovsky, P., "Single neuron analysis of dorsal column nuclei and spinal nucleus of trigeminal in cat,” J. Neurophysiol., 24. 333-349. 1961.
 
[22]  Jacobs, V.L. and Sis, R.F., “Ascending projections of the dorsal column in a garter snake (Thamnophis siritails): A degeneration study,” Anat. Rec., 196. 37-50. 1980.
 
[23]  Molenaar, G., “The rhombencephalon of Python reticulatus, a snake possessing infrared receptors,” Neth. J. Zool., 27. 133-180. 1977.
 
[24]  ten Donkelaar, H.J. and Nieuwenhuys, R., The Brainstem.: Biology of the Reptilia, New York Academic Press In: Gans C (ed.), 1979, 133-200.
 
[25]  Tan, C.K. and Gopalakrishnakone, P., “The fine structure of the dorsal column nucleus and the nucleus of bischoff of the python (Python reticulatus),” J. Morpho., 190. 243-257. 1986.
 
[26]  Wild, J.M., “The avian somatosensory system. I. Primary spinal afferent input to the spinal cord and brainstem in the pigeon (Columba liuia),” J. Comp. Neurol., 240. 377-395. 1985.
 
[27]  Berkley, K.J., Budell, R.J., Blomqvist, A. and Bull, M., “Output Systems of the Dorsal Column Nuclei in the Cat,” Brain Res. Revi., 2. 199-225. 1986.
 
[28]  Chang, H.T. and Ruch, T.C., “Organization of the dorsal columns of the spinal cord and their nuclei in the spider monkey,” J. Anat. 81. 140-149. 1947.
 
[29]  Keller, J.H. and Hand, P.J., “Dorsal root projections to nucleus cuneatus of the cat,” Brain Res., 20. 1-17. 1970.
 
[30]  Hand, P.J., “Lumbosacral dorsal root terminations in the nucleus gracilis of the cat. Some observations on terminal degeneration in other medullary sensory nuclei,” J. Comp. Neurol., 1261. 137-156. 1966.
 
[31]  Johnson, J.I., Welker, W.I. and Puaols, B.H., “Somatotopic organization of racoon dorsal column nuclei,” J. Comp. Neurol., 132. 1-44. 1968.
 
[32]  Hamilton, T.C. and Johnson, J.I., “Somatotopic organization related to nuclear morphology in the cuneate-gracile complex of opossums Didelphis marsupialis virginiana,” Brain Res., 51. 125-140. 1973.
 
[33]  Gulley, R.L., “Golgi studies of the nucleus gracilis in the rat,” Anat. Rec., 177. 325-442. 1973.
 
[34]  Tan, C.K. and Wong, W.C., “The Structure and Connections of the Dorsal Column Nuclei,” In: Harrisonmand RJ, Navaratnam V (eds.): Progress in Anatomy, Cambridge University Press 2. 161-177. 1982.
 
[35]  Valverde, F., “The pyramidal tract in rodents. A study of its relations with the posterior column nuclei, dorsolateral reticular formation of the medulla oblongata and cervical spinal cord,” Z. Zellforsch., 71. 297-363. 1966.
 
[36]  Kuypers, H.G.J.M. and Tuerk, J.D., “The distribution of the cortical fibers within the nuclei cuneatus and gracilis in the cat,” J. Anat., 98. 143-162. 1964.
 
[37]  Ramo'n, y Cajal S., “Hictologi'e du Syste'me Nerveux de l'Homme et des Vertbres,” A. Mjoine, Paris 1. 889-911. 1909.
 
[38]  Basbaum. A.I. and Hand, R.J., “Projections of cervicothoracic dorsal roots to the cuneate nucleus of the rat, with observations on cellular "bricks"” J. Comp. Neurol., 148. 347-360. 1973.
 
[39]  Taber, E., “The cytoarchitecture of the brain stem of the cat. I. Brain stem nuclei of cat,” J. Comp. Neurol., 116. 27-70. 1961.
 
[40]  Biedenbach, M.A., “Cell density and regional distribution of cell types in the cuneate nucleus of the rhesus monkey,” Brain Res., 45. 1-14. 1972.
 
[41]  Al-hussain, S.M., Al-saffar, R.A. and Zaqout, S.I., “Morphological and quantitative study of neurons in the gracile nucleus of the camel brain stem,” J. Behav. Brain Sci., 2. 35-47. 2012.
 
[42]  Zaqout, S.I., Al-hussain, S.M., Al-saffar, R.A. and El-dwairi, Q.A., “A Golgi Study of the Camel Cuneate Nucleus,” Anat. Rec., 295. 2191-2204. 2012.
 
[43]  Berkley, K.J., “Different targets of different neurons in nucleus gracilis of the cat,” J. Comp. Neurol., 163. 285-303. 1975.
 
[44]  Blomqvist, A. and Westman, J., “Combined HRP and Fink-Heimer staining applied on the gracile nucleus in the cat,” Brain Res., 99. 339-342. 1975.
 
[45]  Boivie, J., “Anatomical observations on the dorsal column nuclei, their thalamic projection and the cytoarchitecture of some somatosensory thalamic nuclei in the monkey,” J. Comp. Neurol., 178. 17-48. 1978.
 
[46]  Ellis, J.L.C. and Rustioni, A., “A correlative HRE Golgi, and EM study of the intrinsic organization of the feline dorsal column nuclei,” J. Comp. Neurol., 197. 341-367. 1981.
 
[47]  Nyberg, G. and Blomqvist, A., “The central projection of muscle afferent fibers to the lower medulla and upper spinal cord: an anatomical study in the cat with the transganglionic transport method,” J. Comp. Neurol., 230. 99-109. 1984.
 
[48]  Maslany, S., Crockett, D.P. and Egger, M.D., “Somatotopic organization of the dorsal column nuclei in the rat: transganglionic labelling with B-HRP and WGA-HRP,” Brain Res., 564. 56-65. 1991.
 
[49]  Maslany, S., Crockett, D.R., Egger, M.D., “The cuneate nucleus in the rat does have an anatomically distinct middle region,” Neuros. Let., 139. 130-134. 1992.
 
[50]  Crockett, D.R., Zhang, J. and Egger, M.D., “A modified cytochrome oxidase staining procedure reveals "patches" of intense metabolic activity in the cuneate nucleus of the adult rat,” Anal. Rec., 226. 23A. 1990a.
 
[51]  Crockett, D.R., Harris, S.L., Maslany, S., Zhang, J. and Egger, M.D., “Anatomical investigations of afferents to the cervical internal basilar nucleus in the rat: Anterograde, intra-axonal and immunocytochemical labelling studies,” Soc. Neurosci. Abstr., 16. 221. 1990b.
 
[52]  Crockett, D.R., Harris, S.L., Maslany, S., Egger, M.D. “Calcitonin gene-related peptide (CGRP) immunoreactive fibers are primarily restricted to a "middle" region of the cuneate nucleus in the rat,” Soc. Neurosci. Abstr., 17. 289. 1991.
 
[53]  Gordon, G. and Jukes, M.G.M., “Dual organization of the exteroceptive components of the cat’s gracile nucleus,” J. Physiol. (Lond.), 173. 263-290. 1964.
 
[54]  Taber, E., “Histogenesis of brain stem neurons studied autoradiographically with thymidine-H3 in the mouse,” Anat. Rec., 145. 291. 1963.
 
[55]  Ueyama, T., Houtani, T., Ikeda, M., Sato, K., Sugimoto, T. and Mizuno, N., “Distribution of primary afferent fibers projecting from hindlimb cutaneous nerves to the medulla oblongata in the cat and rat,” J. Comp. Neurol., 341. 145-158. 1994.
 
[56]  Strata, F., Coq, J.O., Kaas, J.H., “The chemo- and somatotopic architecture of the galago cuneate and gracile nuclei,” Neuroscience, 116. 831-850. 2003.
 
[57]  Florence, S.L., Wall, J.T. and Kaas, J.H., “Somatotopic organization of inputs from the hand to the spinal gray and cuneate nucleus of monkeys with observations on the cuneate nucleus of humans,” J. Comp. Neurol., 286. 48-70. 1989.
 
[58]  Florence, S.L., Wall, J.T. and Kaas, J.H., “Central projections from the skin of the hand in squirrel monkeys,” J. Comp. Neurol., 311. 563-578. 1991.
 
[59]  Noriega, A.L. and Wall, J.T., “Parcellated organization in the trigeminal and dorsal column nuclei of primates,” Brain Res., 565. 188-194. 1991.
 
[60]  Wu, C.W. and Kaas, J.H., “The effects of long-standing limb loss on anatomical reorganization of the somatosensory afferents in the brainstem and spinal cord,” Somatosens. Mot. Res., 19. 153-163. 2002.
 
[61]  Xu, J. and Wall, J.T., “Cutaneous representations of the hand and other body parts in the cuneate nucleus of a primate, and some relationships to previously described cortical representations,” Somatosens. Mot. Res., 13.187-197. 1996.
 
[62]  Xu, J. and Wall, J.T., “Functional organization of tactile inputs from the hand in the cuneate nucleus and its relationship to organization in the somatosensory cortex,” J. Comp. Neurol., 411. 369-389. 1999a.
 
[63]  Xu, J. and Wall, J.T., “Evidence for brainstem and supra-brainstem contributions to rapid cortical plasticity in adult monkeys,” J. Neurosci., 19. 7578-7590. 1999b.
 
[64]  Qi, H.X. and Kaas, J.H., “Organization of Primary Afferent Projections to the Gracile Nucleus of the Dorsal Column System of Primates,” J. Comp. Neurol., 499. 183-217. 2006.
 
[65]  Wen, C.Y., Wong, W.C. and Tan, C.K., “The fine structural organization of the cuneate nucleus in the monkey (Macaca fascicularis),” J. Anat., 127. 169-180. 1978.