American Journal of Medical and Biological Research. 2013, 1(1), 16-22
DOI: 10.12691/AJMBR-1-1-3
Original Research

Antimicrobial Activities of the Henna Extract and Some Synthetic Naphthoquinones Derivatives

Nadjib Mohammed Rahmoun1, , Zahia Boucherit-Atmani1, Mohammed Benabdallah2, Kebir Boucherit1, Didier Villemin3 and Noureddine Choukchou-Braham2

1Département de biologie, Faculté des Sciences, Tlemcen University, Algeria

2Département de chimie, Faculté des Sciences, Tlemcen University, Algeria

3ENSICAEN, UCBN, Caen University, Caen, France

Pub. Date: February 15, 2013

Cite this paper

Nadjib Mohammed Rahmoun, Zahia Boucherit-Atmani, Mohammed Benabdallah, Kebir Boucherit, Didier Villemin and Noureddine Choukchou-Braham. Antimicrobial Activities of the Henna Extract and Some Synthetic Naphthoquinones Derivatives. American Journal of Medical and Biological Research. 2013; 1(1):16-22. doi: 10.12691/AJMBR-1-1-3

Abstract

Naphthoquinones are compounds widely distributed in the environment, both as natural products and as pharmaceutical agents. They have been the subject of much research due to their pharmacological activities. In this study, methanol extract of henna and a series of synthesized structural analogue of lawsone have been assessed for their antimicrobial activities. Methanol extract of henna and eight naphthoquinones derivatives were tested as potential antimicrobial agents against twelve bacteria and three Candida species using the agar disc diffusion and broth microdilution methods according to guidelines recommended by the Clinical and Laboratory Standards Institute. Besides 2b and 3b, methanol extract and all the synthesized compounds 1a, 2a, 1b and 1c, 2c and 3c showed weak-to-strong activity against at least one tested strain. However, the compounds 1c and 1b were found to have the most effective activity against pathogenic bacteria and displayed an activity 8 to 64 fold higher than that othe structural analogue, lawsone. Their MICs ranged from 8-64 µg ml-1. Henna extract was found to have an interesting activity. Our results indicate an effective in vitro activity of 1,4-naphthoquinone derivatives and suggest the benefits of further studies for its application in antibiotherapy.

Keywords

Antimicrobial activity, bioactives compounds, naphthoquinone; synthesis

Copyright

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References

[1]  Newman, D.J., Cragg, G.M. and Snader, K.M, “The influence of natural products upon drug discovery”. Nat. Prod. Rep. 17. 215-234. Jun. 2000.
 
[2]  Ernst, E, “The efficacy of herbal medicine: An overview”. Fundam. Clin. Pharmacol. 19. 405-409. Apr. 2005.
 
[3]  Chaudhary, G., Goyal, S. and Poonia, P, “Lawsonia inermis Linnaeus: A Phytopharmacological”. Int. J. Pharma. Sci. Drug Res. 2(2). 91-98. Jun. 2010.
 
[4]  Bhuvaneswari, K., Gnana, P.S., Kuruvilla, A. and Appala, R.A, “Inhibitory concentrations of Lawsonia inermis dry powder for urinary pathogens”. Indian J. Pharmacol. 34. 260-3. Aug. 2002.
 
[5]  Rahmoun, N.M., Boucherit-Otmani, Z., Boucherit, K., Benabdallah, M. and Choukchou-Braham, N. “Antifungal activity of the Algerian Lawsonia inermis (henna),” Pharm. Biol, 51(1). 131-135. Jan.2013.
 
[6]  Villemin, D., Benabdallah, M., Rahmoun, N., Jouannic, C., Choukchou-Braham, N. and Mostefa-Kara, B, “A green route for synthesis of new 1,2-naphthoquinomethane acetonitriles in water”, Synth. Commun, 40 (23). 3514-3521. Nov.2010.
 
[7]  Chung, Y., Yoo, J., Park, S., Kim, B.H., Chen, X., Zhan, C. and Cho H, “Dependence of antitumor activity on the electrophilicity of 2-substituted 1,4-naphthoquinone derivatives”, Bull. Korean Chem. Soc, 28 (4). 691-694. Apr. 2007.
 
[8]  Rahmoun, N.M., Boucherit-Otmani, Z., Boucherit, K., Benabdallah, M., Villemin. D. and Choukchou-Braham, N, “Antibacterial and antifungal activity of lawsone and novel naphthoquinone derivatives,” Med. Mal. Infec, 42 (6). 270-275. Jun. 2012.
 
[9]  Castro, F.A.V., Mariani, D., Panek, A.D., Eleutherio, E.C.A. and Pereira, M.D, “Cytotoxicity mechanism of two naphthoquinones (menadione and plumbagin) in saccharomyces cerevisiae,” plos one 3 (12). e3999. Dec. 2008.
 
[10]  Valderrama, J.A., Leiva, H., Rodriguez, J.A., Theoduloz, C. and Schmeda-Hirshmann, G, “Studies on quinones. Part 43: Synthesis and cytotoxic evaluation of polyoxyethylenecontaining 1,4-naphthoquinones,” Bioorg. Med. Chem, 16 (7). 3687-3693. Apr. 2008.
 
[11]  Pathirana, C., Jensen, P.R. and Fenical, W, “,” Tetrahedron Lett, 33(50). 7663-7666. Dec.1992.
 
[12]  Pierpont, C.G, “Unique Properties of Transition Metal Quinone Complexes of the MQ3 Series,” Coord. Chem. Rev. 219–221, 415-433. Jan.2001.
 
[13]  Plyta, Z.F., Li, T.H., Papageorgiou, V.P., Mellidis, A.S., Assimopoulou, A.N., Pitsinos, E.N. and Couladouros, E.A, “Inhibition of topoisomerase I by naphthoquinone derivatives,” Bioorg. Med. Chem. Lett, 8 (23). 3385-3390. Dec.1998.
 
[14]  Salmon-Chemin, L., Buisine, E., Yardley, V., Kohler, S., Debreu, M.A., Landry, V., Sergheraert, C., Croft, S.L., Krauth-Siegel, R.L. and Davioud-Charvet, E, “2- and 3-substituted 1,4-naphthoquinone derivatives as subversive substrates of trypanothione reductase and lipoamide dehydrogenase from Trypanosoma cruzi: synthesis and correlation between redox cycling activities and in vitro cytotoxicity,” J. Med. Chem, 44 (4). 548-565. Feb. 2001.
 
[15]  Sharma, V.K, “Tuberculostatic activity of henna (Lawsonia inemis Linn.),” Tubercle, 71 (4). 293-295. Dec.1990.
 
[16]  National Committee for Clinical Laboratory Standards. Performance standards for antimicrobial disk susceptibility tests, Approved standard-eight edition M2-A8, Wayne P.A, 2003.
 
[17]  Epsinel-ingroff, A, “Standardized disk diffusion method for yeasts,” Clin. Microbiol. Newsl, 29 (13). 97-100. July.2007.
 
[18]  Clinical Laboratory Standards Institute. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically, Approved standard. CLSI document. M07-A8. Wayne, P.A, 2009.
 
[19]  Clinical Laboratory Standards Institute. Reference method for broth dilution antifungal susceptibility testing of yeasts, Approved Standard- Third Edition M27-A3 Wayne P.A, 2008.
 
[20]  Shaefler, S, “Methicillin-resistant strains of Staphylococcus aureus resistant to quinolones,” J. Clin. Microbiol, 27 (2). 335-336. Feb.1989.
 
[21]  Shalit, I., Berger, S.A., Gorea, A. and Frimerman, H, “Widespread quinolone resistance among methicillin-resistant Staphylococcus aureus isolates in a general hospital”, Antimicrob. Agents Chemother, 33 (4). 181-184. Apr.1989.
 
[22]  Emori, T.G. and Gaynes, R.P, “An overview of nosocomial infections including the role of the microbiology laboratory”, Clin. Microbiol. Rev, 6 (4). 428- 442. Oct.1993.
 
[23]  Richardson, M.D, “Changing patterns and trends in systemic fungal infections”, J. Antimicrob. Chemother, 56. (S1). i5-i11. Sept. 2005.
 
[24]  Ali, N.A.A., Julich, W.D., Kusnick, C. and Lindequist U, “Screening of Yemeni medicinal plants for antibacterial and cytotoxic activities”. J Ethnopharmacol, 74 (2). 173-179. Feb. 2001.
 
[25]  Dama, L.B, Poul, B.N. and Jadhav, B.V, “Antimicrobial activity of Napthoquinonic compounds”. J. Ecotox. Environ. Monit, 8. 213-215. 1999.
 
[26]  Saadabi, M.A.A, “Evaluation of Lawsonia inermis L. (Sudanese Henna) Leaf extracts as an antimicrobial agent”. Res. J. Biol. Sci. 2(4). 419-423. 2007.
 
[27]  Malekzadeh, F, “Antimicrobial activity of Lawsonia inermis L”. Appl. Microbiol. 16. 663-664. 1968.
 
[28]  Habbal, O.A., Ai-Jabri, A.A., El-Hag, A.H., Al-Mahrooqi, Z.H. and Al- Hashmi, N.A, “In-vitro antimicrobial activity of Lawsonia inermis Linn (henna) - A pilot study on the Omani henna”. Saudi Med. J. 26. 69-72. Jan. 2005.
 
[29]  Dixit, S.N., Srivastava, H.S. and Tripathi, R.D, “Lawsone, the antifungal antibiotic from the leaves of Lawsonia inermis and some aspects of its mode of action”. Indian Phytopathol. 31. 131-133. 1980.
 
[30]  Raveesha, K.A., Satish, S., Mohana, D.C. and Raghavendra, M.P, “Antifungal activity of some plant extracts against important seed borne pathogens of Aspergillus sp”. J Agr Technol. 3(1). 109-119. May. 2007.
 
[31]  Gershon, H. and Shanks, L, “Fungitoxicity of 1,4-naphthoquinones to Candida albicans and Trichophyton mentagrophytes,” Can. J. Microbiol, 21 (9). 1317-1321. Sept.1975.
 
[32]  Gafner, S., Wolfender, J.L., Nianga, M., Stoceckli-Evans, H. and Hostettmann, K, “Antifungal and antibacterial naphthoquinones from Newbouldia leavis roots,” Phytochemistry, 42 (5). 1315-1320. July.1996.
 
[33]  Ferraz, P.A.L., De Abreu, F.C., Tonholo, J., Chiari, E., Pinto, A.V., Glezer, V. and Goulart, M.O.F, “Electrochemical aspects of the reduction of biologically active 2-hydroxy-3-alkyl-1,4-naphthoquinones,” J. Electroanal. Chem, 507. 275-286. July.2001.
 
[34]  Ashnagar, A., Bruce, J.M., Dutton, P.L. and Prince, R.C, “One- and two-electron reduction of hydroxy-1,4-naphthoquinones and hydroxy-9,10-anthraquinones. The role of internal hydrogen bonding and its bearing on the redox chemistry of the anthracycline antitumour quinines”, Biochim. Biophys. Acta, 801 (3). 351-359. Oct. 1984.
 
[35]  Crawford, P.W., Carlos, E., Ellegood, J.C., Cheng, C.C., Dong, Q., Liu, D.F. and Luo, Y.L, “The Electrochemistry of antineoplastic furanquinones: Electrochemical properties of benzo[b]naphtho[2,3-d]furan-6,11-dione derivatives”, J. Electroanal. Chem, 41 (15). 2399-2403. Nov.1996.